Validation of Modified Functional Movement Screen (MFMS) in NCAA DIII Female Soccer Players

Tiffany Widseth
Augsburg University

Follow this and additional works at: https://idun.augsburg.edu/zyzzogeton

Part of the Sports Sciences Commons

Recommended Citation
Widseth, Tiffany, "Validation of Modified Functional Movement Screen (MFMS) in NCAA DIII Female Soccer Players" (2018). Zyzzogeton Posters. 5.
https://idun.augsburg.edu/zyzzogeton/5

This Book is brought to you for free and open access by the Undergraduate at Idun. It has been accepted for inclusion in Zyzzogeton Posters by an authorized administrator of Idun. For more information, please contact bloomber@augsburg.edu.
Validation of Modified Functional Movement Screen (MFMS) in NCAA DIII Female Soccer Players

Tiffany Widseth, Ana B. Freire Ribeiro, Ph.D., Augsburg University, Minneapolis, MN
Sponsor: Mark Blegen, Ph.D., FACSM, Saint Catherine University, St. Paul, MN

Abstract

Background: The Functional Movement Screen (FMS) is comprised of seven tests to identify compensatory movement patterns that may increase injury risk. A modified FMS (MFMS) was created by Augsburg Athletic Trainers to improve screening efficiency. It included three original FMS tests: shoulder mobility (SM), active straight leg raise (ASLR), trunk stability push-up, (TSPU) and a newly added test; the vertical drop jump (VDJ), all scored on a simplified 0-2 scale.

Objective: This study aimed to validate the MFMS for DIII female soccer players.

Methods: 16 NCAA DIII soccer players and 20 non-athlete controls were recruited and completed two trials of FMS and MFMS. Reliability was calculated as Pearson Product Moment. Concurrent validity was calculated between FMS and MFMS score using R Statistical Software.

Results: Mean age of soccer group was 21 (SD=1.37) and control 21.05 (SD=1.61). Mean FMS score for soccer group was 14.38 (SD=1.54) and control 13.35 (SD=2.39). Mean MFMS score for soccer was 5.62 (SD=0.96) and control 4.95 (SD=0.69). Soccer scores for the first MFMS trial were significantly larger than controls (p=0.02). MFMS reliability coefficient was 0.99 and MFMS was 0.88.

Discussion: There were moderate positive correlations between FMS and MFMS for the soccer group (r=0.51) and for controls (r=0.46), but they were not large enough to validate the MFMS. When the MFMS was rescored on the original 0-3 scale (excluding VDJ) it was valid for both groups (soccer r = 0.79, controls r = 0.85), suggesting that the modified scale was the reason for the lack of validity.

Conclusion: The MFMS is not valid, suggesting potential issues with the new scoring system.

Table 1. Summary of Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Means</th>
<th>Soccer</th>
<th>Controls</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>21 ± 1.37</td>
<td>21.05 ± 1.61</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>FMS Trial 1</td>
<td>14.38 ± 1.54</td>
<td>13.35 ± 2.39</td>
<td>-7.2</td>
<td></td>
</tr>
<tr>
<td>FMS Trial 2</td>
<td>14.44 ± 1.26</td>
<td>13.35 ± 2.39</td>
<td>-7.5</td>
<td></td>
</tr>
<tr>
<td>MFMS Trial 1</td>
<td>5.62 ± 0.96*</td>
<td>4.95 ± 0.69</td>
<td>-11.9</td>
<td></td>
</tr>
<tr>
<td>MFMS Trial 2</td>
<td>5.5 ± 0.97</td>
<td>4.95 ± 0.69</td>
<td>-10</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Validity for soccer (r=0.54) Figure 2. Validity for controls (r=0.46)

Discussion

Trial 1 of MFMS for the soccer group was significantly higher than trial 2 by 2.12% (p = 0.02). Given that the soccer players participated in drills and lifts for other studies between trials, this MFMS could be sensitive to fatigue status. When the MFMS was rescored on the 0-3 scale (excluding VDJ) it was valid for both groups (soccer r = 0.79, controls r = 0.85), suggesting that the modified scale was the reason for the lack of validity.

Conclusion

This version of MFMS was not valid when rating on a scale from 0-2 but is valid when rating on a scale from 0-3, suggesting issues with the new scale.

References

