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A STOCHASTIC MODEL FOR PSA LEVELS: BEHAVIOR OF SOLUTIONS
AND POPULATION STATISTICS

P. BĚLÍK,

P.W.A. DAYANANDA,

JOHN T. KEMPER,

MIKHAIL M. SHVARTSMAN

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ST. THOMAS

ST. PAUL, MN 55105

Abstract. This paper investigates the partial differential equation for the evolution of prostate-

specific antigen (PSA) levels following radiotherapy. We also present results on the behavior of

moments for the evolving distribution of PSA levels and estimate the probability of long-term

treatment success and failure related to values of treatment and disease parameters.

1991 Mathematics subject classification (Amer. Math. Soc.): 35K57, 60G51, 60H30, 60H35, 92B15

Keywords: PSA (prostate-specific antigen); Prostate cancer; Continuous stochastic model; Deter-

ministic model; Stochastic differential equation; Chapman–Kolmogorov partial differential equation;

Exponential decay; Moments; Numerical Analysis; Maximum Principle; Radiotherapy.

1. Introduction

This paper extends an investigation of the continuous stochastic model for the prostate-specific

antigen (PSA) levels following radiotherapy undertaken in [1]. Here we address the case in which

parameters do not allow for an explicit formula for the evolving PSA density function. We also give

a general analysis, including bounds, for the probability density function using maximum principle

arguments and conduct an analysis of the moments of the random PSA levels using theoretical and

numerical tools.

Date: June 27, 2005.
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In [1] we derived an explicit form for the distribution of future PSA levels (including probabilities

of cure) for the case a = α, where a is the decay rate of the effect of radiotherapy and α is the

(implied) tumor growth rate. In this paper we examine the general case without the restriction

a = α.

The paper is organized as follows. In §2 we describe the original and transformed initial-boundary

value problems. In §3 we summarize results developed in [1] for the case a = α, with corresponding

formulas for the fundamental solutions. In §4 we use maximum principle arguments to estimate

the original and transformed probability density functions for the cases a ≤ α and a ≥ α. In §5

we estimate the probability of cure for these two cases. In §6 we derive an ordinary differential

equation for the mean PSA level coupled with the probability of cure and find estimates for the rate

of growth of the mean PSA level. We also analyze the time when the minimal mean PSA level is

reached and derive appropriate bounds. In §7 we carry out numerical modeling of the mean PSA

level and compare our analysis with available clinical data. In §8 we offer conclusions and comments.

2. Initial-Boundary Value Problems

In [1] we introduced the following Chapman–Kolmogorov partial differential equation

(2.1)
1
2
σ2 ∂2p

∂x2
− ∂

∂x

(
(αx− ke−at)p

)
=

∂p

∂t
,

where p(x, t) : [0,∞) × [0,∞) → [0,∞) is, for each t ∈ [0,∞), the probability density function

in x. Here x represents PSA level and t represents time. The parameters involved are α > 0

(tumor growth rate), a > 0 (decay rate of the effect of radiotherapy), k > 0 (indicator of treatment

intensity/effectiveness), and σ > 0 (volatility of the PSA process). The initial PSA distribution is

given by

(2.2) p(x, 0) = f(x) ≥ 0, f(0) = 0,
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where f is continuous, compactly supported on [0,∞) and satisfies
∫∞
0

f(x) dx = 1. We also have

an “absorbing barrier” boundary condition (irreversibility of “cure”)

(2.3) p(0, t) = 0 for all t > 0,

and we impose the growth condition

(2.4) xp(x, t) is bounded as x →∞ for each t.

The model (2.1)–(2.4) was introduced as an alternative to the deterministic model

X ′(t) = αX(t)− ke−at,(2.5)

X(0) = m,(2.6)

investigated in [2]. We next develop results leading to the proof of the following theorem.

Theorem 2.1. The initial-boundary value problem (2.1)–(2.4) has a unique smooth solution p(x, t)

on [0,∞)× [0,∞).

By (2.4) and the Maximum Principle for parabolic equations,

(2.7) 0 ≤ p(x, t) ≤ max p(x, 0) = max f(x) ≡ fm for all x ≥ 0, t ≥ 0.

The transformation

y = α

(
x− k

a + α
e−at

)
e−αt,

τ =
ασ2

2
(
1− e−2αt

)
,

Q(y, τ) =
p(x, t)eαt

α
,

(2.8)

was used (cf. [1]) to replace the initial-boundary value problem (2.1)–(2.4) with the one for the

transformed probability density function Q(y, τ) satisfying:

(2.9)
1
2

∂2Q

∂y2
− ∂Q

∂τ
= 0, (y, τ) ∈ D,
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(2.10) Q(y, 0) =
1
α

f

(
y

α
+

k

a + α

)
≡ f∗(y) for y ≥ − αk

a + α
,

(2.11) Q(y∗(τ), τ) = 0 for 0 ≤ τ ≤ ασ2

2
,

and

(2.12) yQ(y, τ) is bounded as y →∞ for each τ ,

where D =
{
(y, τ) : 0 ≤ τ ≤ ασ2/2, y∗(τ) ≤ y < ∞

}
, with

(2.13) y∗(τ) = − αk

a + α

(
1− 2τ

ασ2

)a + α

2α
.

The slope of the tangent line to y∗ at τ = 0 is k/(ασ2) and

(2.14) y∗ ′′(τ) = − k(a− α)
α(ασ2 − 2τ)2

(
1− 2τ

ασ2

)a + α

2α
.

We note that (2.14) implies that

(2.15) y∗ ′′(τ) > 0 if a < α and y∗ ′′(τ) < 0 if a > α .

The conditions on f outlined after (2.2) imply that there exists N0 > 0 such that f∗(y) = 0 outside

the compact interval [−(αk)/(a + α), N0]. We note that the first equation in (2.8) implies that

yQ = xp − (ke−atp/(a + α)). So (2.4) immediately entails (2.12). Conversely, if, for some fixed t,

yQ ≤ C, where C > 0, then xp ≤ C + kp/(a + α). If there exists a sequence xn → ∞ so that

xnp(xn) →∞, then

1 ≤ C

xnp(xn)
+

k

xn(a + α)
→ 0 + 0 = 0 as xn →∞,

which is not possible, so xp is bounded.

Theorem 2.2. The initial-boundary value problem (2.9)–(2.12) has a unique smooth solution Q(y, τ)

on D.
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Proof of Theorem 2.2. Let Qmax(y, τ) be the solution of (2.9) on
{
(y, τ) : 0 ≤ τ ≤ ασ2/2, y ∈ R

}
with initial values obtained by extending Q(y, 0) by zero for y < y∗(0) (cf. Theorem 12, page 25 of

[3]). Now let QN (y, τ) be the unique smooth solution of (2.9) on the bounded domain

DN =
{
(y, τ) : 0 ≤ τ ≤ ασ2/2, y∗(τ) ≤ y ≤ N

}
with the boundary conditions (2.11), Q(N, τ) = 0 for 0 ≤ τ ≤ ασ2/2, with the initial condition

(2.10), and with N > N0. By the (standard) maximum principle for the heat equation in DN ,

Qmax ≥ QN ≥ 0. In addition, since QN+1 ≥ QN = 0 for y = N , the maximum principle can be

applied again in DN to conclude that Qmax ≥ QN+1 ≥ QN ≥ 0 on DN . Thus the sequence of

functions Qn (n > N) converges pointwise in DN for every N . A regularity theorem (cf. Theorem

11, page 74 of [3]) implies that each Qn is C∞ in DN for every N and Theorem 15, page 80 of [3]

guarantees that the limit Q(y, τ) = limn→∞Qn(y, τ) solves the heat equation. This limit satisfies

(2.9)–(2.12) in D. �

Furthermore, by (2.12) and the maximum principle

(2.16) 0 ≤ Q(y, τ) ≤ fm

α
for all (y, τ) ∈ D.

Proof of Theorem 2.1. Transforming back to (x, t)-space, the function obtained in Theorem 2.2,

p(x, t) = αe−αtQ(α(x− ke−at

a + α
)e−αt,

ασ2

2
(1− e−2αt)) ,

satisfies the original problem. Thus the result follows from Theorem 2.2 and the one-to-one nature of

the transform in (2.8). �

3. Original Formulas for Q and p in the case a = α

The fundamental solution corresponding to the initial-boundary value problem (2.9)–(2.12) in the

case a = α was shown in [1] to be

(3.1) Q(y, τ ;m∗∗) =
1√
2πτ

{
exp
(
− (y −m∗∗)2

2τ

)
− exp

(
2km

σ2
− (y + m∗∗ + k)2

2τ

)}
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for all (y, τ) ∈ L ≡
{
(y, τ) : 0 ≤ τ ≤ ασ2/2, y∗∗(τ) ≤ y < ∞

}
, where

(3.2) y∗∗(τ) =
k

ασ2
τ − k

2
,

m is the singularity of the fundamental solution at time t = 0, and

(3.3) m∗∗ = α

(
m− k

2α

)
= αm− k

2

is the singularity of the fundamental solution in the transformed region L at τ = 0. The correspond-

ing PSA density function (also developed in [1]) is

p(x, t;m) =
αe−αt√

ασ2π(1− e−2αt)

{
exp
(
− [(k/2)− αm + e−αt(αx− (k/2)e−αt)]2

ασ2(1− e−2αt)

)

−exp
(

2km

σ2
− [(k/2) + αm + e−αt(αx− (k/2)e−αt)]2

ασ2(1− e−2αt)

)}
for x ≥ 0 and t > 0 ,

(3.4)

and the solution of a problem with distributed initial values is given by the convolution of those

values with the fundamental solution (3.4).

4. Estimates for Q and p for general a, α > 0

We start by defining m∗, the singularity of the fundamental solution in the transformed region D

at τ = 0, by

(4.1) m∗ = α

(
m− k

a + α

)
.

First, we consider the special case m∗ > 0. We set T + ≡
{
(τ, y) : 0 ≤ τ < ασ2/2, 0 ≤ y < ∞

}
⊂ D

(cf. Figures 1 & 2) and use the method of images as described in §3 to find an explicit fundamental

solution in T +. By the maximum principle (with m∗ = m∗∗), we can obtain a lower bound for the

fundamental solution

(4.2) Q(y, τ ;m∗) ≥ 1√
2πτ

{
exp
(
− (y −m∗)2

2τ

)
− exp

(
− (y + m∗)2

2τ

)}
for all (y, τ) ∈ T +.
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In the (x, t)-domain, the corresponding bound is

p(x, t;m) ≥ αe−αt√
ασ2π(1− e−2αt)

{
exp
(
−α [xe−αt −m]2

σ2(1− e−2αt)

)

−exp
(
−α [xe−αt + m]2

σ2(1− e−2αt)

)}
for x ≥ k

a + α
e−at, t > 0.

(4.3)

Next we consider the case when a ≤ α without restricting m∗. Let T ≡
{
(y, τ) : 0 ≤ τ ≤ ασ2/2, ỹ(τ) ≤ y < ∞

}
,

where

(4.4) ỹ(τ) =
k

ασ2
τ − αk

a + α

(cf. Figure 1). Note that (2.15) implies that D ⊂ T and that the line (4.4) is tangent to the curve

(2.13) at the point (0,− αk

a + α
). Again, by using the method of images and the maximum principle,

we find an explicit formula that provides an upper bound for the fundamental solution on D:

(4.5) Q(y, τ ;m∗) ≤ 1√
2πτ

{
exp
(
− (y −m∗)2

2τ

)
− exp

(
2km

σ2
− (y + m∗ + (2αk/(a + α)))2

2τ

)}
.

Now we consider the region S ≡
{
(y, τ) : 0 ≤ τ < ασ2/2, y0(τ) ≤ y < ∞

}
(cf. Figure 1), where

(4.6) y0(τ) = − αk

a + α
+

2kτ

(a + α)σ2
.

The maximum principle now yields a lower bound for the fundamental solution:

(4.7)

Q(y, τ ;m∗) ≥ 1√
2πτ

{
exp
(
− (y −m∗)2

2τ

)
− exp

(
4αkm

(a + α)σ2
− (y + m∗ + (2αk/(a + α)))2

2τ

)}

for all (y, τ) ∈ S ⊂ D ⊂ T . In the (x, t)-domain, we have corresponding bounds for p(x, t;m):

p(x, t;m) ≤ e−αt
√

a + α√
2σ2π(1− e−2αt)

{
exp
(
− [k −m(a + α) + e−αt(x(a + α)− ke−αt)]2

2σ2(1− e−2αt)(a + α)

)

−exp
(

2km

σ2
− [k + m(a + α) + e−αt(x(a + α)− ke−αt)]2

2σ2(1− e−2αt)(a + α)

)}
for x ≥ 0 and t > 0

(4.8)
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and

p(x, t;m) ≥ αe−αt√
ασ2π(1− e−2αt)

{
exp
(
−α [k −m(a + α) + e−αt(x(a + α)− ke−αt)]2

σ2(1− e−2αt)(a + α)2

)

− exp
(

4αkm

(a + α)σ2
− α [k + m(a + α) + e−αt(x(a + α)− ke−αt)]2

σ2(1− e−2αt)(a + α)2

)}
for

x ≥ k

a + α
(e−at − e−αt) and t > 0 .

(4.9)

Finally, we consider the case when a ≥ α without restricting m∗. We can apply similar techniques

using the regions T ′ ≡
{
(y, τ) : 0 ≤ τ < ασ2/2, ỹ(τ) ≤ y < ∞

}
and S. Note that, in view of (2.15),

T ′ ⊂ D ⊂ S (cf. Figure 2). By the maximum principle, we have

(4.10) Q(y, τ ;m∗) ≥ 1√
2πτ

{
exp
(
− (y −m∗)2

2τ

)
− exp

(
2km

σ2
− (y + m∗ + (2αk/(a + α)))2

2τ

)}

for all (y, τ) ∈ T ′. The upper bound is given by

(4.11)

Q(y, τ ;m∗) ≤ 1√
2πτ

{
exp
(
− (y −m∗)2

2τ

)
− exp

(
4αkm

(a + α)σ2
− (y + m∗ + (2αk/(a + α)))2

2τ

)}

for all (y, τ) ∈ D. In the (x, t)-domain, the corresponding estimates are

p(x, t;m) ≤ αe−αt√
ασ2π(1− e−2αt)

{
exp
(
−α [k −m(a + α) + e−αt(x(a + α)− ke−αt)]2

σ2(1− e−2αt)(a + α)2

)

−exp
(

4αkm

(a + α)σ2
− α [k + m(a + α) + e−αt(x(a + α)− ke−αt)]2

σ2(1− e−2αt)(a + α)2

)}
for x ≥ 0 and t > 0,

(4.12)

and

p(x, t;m) ≥ αe−αt√
ασ2π(1− e−2αt)

{
exp
(
−

α
[
k −m(a + α) + ((a + α)x− k)e−(a+α)t

]2
σ2(1− e−2αt)(a + α)2

)

− exp
(

4αkm

(a + α)σ2
−

α
[
(a + α)xe−αt − ke−(a+α)t + k + m(a + α)

]2
σ2(1− e−2αt)(a + α)2

)}
for

x ≥ k

2α(a + α)

(
(a− α)eαt − (a + α)e−αt + 2αe−at

)
, t > 0 .

(4.13)

Note that the estimates above allow bounds to be determined for the probability of absorption

(cure), 1−M(t), where

(4.14) M(t) ≡
∫ ∞

0

p(x, t) dx =
∫ ∞

y∗(τ)

Q(y, τ) dy .
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We are specifically interested in the treatment failure rate, L, which we define as

(4.15) L ≡ lim
t→∞

M(t) = lim
t→∞

∫ ∞

0

p(x, t) dx = lim
τ→
(

ασ2
2

)− ∫ ∞

y∗(τ)

Q(y, τ) dy .

Note that M(t) is a nonnegative decreasing function (cf. (6.5)) with M(0) = 1. It decays to the

limit L > 0 (cf. §5). So

(4.16) 0 < L ≤ M(t) ≤ M(0) = 1 for all t ≥ 0 .

5. Estimates for the treatment failure rate

As in the previous section, we start with the special case m∗ > 0. By (2.13), (4.2), and (4.14),

we have

(5.1) M(t) ≥ 1√
2πτ

∫ ∞

0

∫ ∞

0

{
exp
(
− (y −m∗)2

2τ

)
− exp

(
− (y + m∗)2

2τ

)}
f∗(m∗) dm∗ dy ,

where τ and t are related via (2.8). Passing to the limit in (5.1) as τ →
(

ασ2

2

)− and, using (4.15),

in case of fundamental solution we obtain

(5.2) L ≥ L1 ,

where

(5.3) L1 ≡ Erf
[
α(m(a + α)− k)

(a + α)
√

ασ2

]
> 0 ,

and where Erf is the standard error function.

Next, we consider the case a ≤ α without restricting m∗. From (2.13), (4.5), (4.7), (4.14), (4.15)

(cf. Figure 1) and, using the technique described in the beginning of this section, we have

(5.4) L2 ≤ L ≤ L3 ≤ L4 ,

where

(5.5) L2 ≡
1
2

(
Erfc

[
α(k −m(a + α))

(a + α)
√

ασ2

]
− exp

(
4kmα

(a + α)σ2

)
Erfc

[
α(k + m(a + α))

(a + α)
√

ασ2

])
,
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(5.6) L3 ≡
1
2

(
Erfc

[
α(k −m(a + α))

(a + α)
√

ασ2

]
− exp

(
2km

σ2

)
Erfc

[
α(k + m(a + α))

(a + α)
√

ασ2

])
,

and

(5.7) L4 ≡
1
2

(
Erfc

[
k − 2mα)
2
√

ασ2

]
− exp

(
2km

σ2

)
Erfc

[
k + 2mα

2
√

ασ2

])
.

Here Erfc(x) = 1− Erf(x).

Finally, we consider the case a ≥ α without restricting m∗. From (2.13), (4.10), (4.11), (4.14),

and (4.15) (cf. Figure 2), we have

(5.8) L4 ≤ L ≤ L2 .

Theorem 5.1. L2 > 0, L3 > 0 and L4 > 0 for all positive α, σ, a, m, and k.

To prove the result, we begin with the following lemma:

Lemma 5.2. Let

(5.9) F (A,B) ≡ 1
2
(
Erfc (B −A)− e4BA Erfc (B + A)

)
Then F (A,B) > 0 for all A > 0 and B > 0.

Proof of Lemma 5.2. Note that F (0, B) = 0 and F (A, 0) = Erf(A). We claim that F (·, B) is

increasing on [0,∞). To show the claim, we note that

(5.10)
∂F

∂A
(A,B) = 2e4AB G(A,B) where G(A,B) =

1√
π

e(−(A+B)2) −B Erfc(A + B) .

Now, G(A,B) approaches zero as A →∞ and

(5.11)
∂G

∂A
(A,B) = − 2√

π
Ae−(A+B)2 < 0 for all A > 0 .

Thus G(·, B) is a positive function on [0,∞) decreasing to zero with

(5.12) G(0, B) =
1√
π

e−B2
−B Erfc(B) and

∂G(0, B)
∂B

= −Erfc(B) < 0 .
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Note that G(0, 0) = 1/
√

π > 0, that G(0, ·) is decreasing on [0,∞) by (5.12), and that G(0, B)

approaches zero as B →∞. So G(0, B) > 0 for all B > 0. The claim follows from positivity of G and

from (5.10). Therefore F (A,B) > 0. �

Proof of Theorem 5.1. First, L2 = F (A,B) if we set

A =
√

α

σ
m and B =

√
α

σ

k

a + α
.

So L2 > 0 by Lemma 5.2. Next, L4 = F (A,B) if we set

A =
√

α

σ
m and B =

k

2
√

ασ2
.

So L4 > 0 by Lemma 5.2. Finally, by (5.4), L3 ≥ L2 > 0. �

We note that in the case when m∗ > 0 and a > α both (5.2) and the first inequality in (5.8)

provide a lower bound on L. In practice, one could evaluate L1 and L4 and pick the best of the

two. In addition, both of these lower bounds can be improved by analyzing a one-parameter family

of suitable rectilinear regions T (s) ⊂ D, where

(5.13) T (s) ≡
{
(y, τ) : 0 ≤ τ < ασ2/2, ỹ(τ, s) ≤ y < ∞

}
, 0 ≤ s ≤ k ,

with the corresponding one-parameter family of tangent lines y(τ, ·) along the curve (2.13) given by

(cf. Figure 2)

(5.14) ỹ(τ, s) =
s

ασ2
τ − s

2
+ b(s) where b(s) =

k(a− α)
2(a + α)

( s

k

) a+α
a−α

.

The respective family of fundamental solutions can be written as

Q(y, τ, s;m∗)

=
1√
2πτ

{
exp
(
− (y −m∗)2

2τ

)
− exp

(
s

ασ2
(2m∗ + s− 2b(s))

)
exp
(

(y + m∗ + s− 2b(s))2

2τ

)}
.

(5.15)

The set of lower bounds is then

(5.16) L(s) =
1
2

(
Erfc

(
b(s)−m∗
√

ασ2

)
− exp

( s

ασ2
(2m∗ + s− 2b(s))

)
Erfc

(
s + m∗ − b(s)√

ασ2

))
.
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Note that L(0) = L1 and L(k) = L4. If we differentiate (5.16) and simplify the derivative at s = 0

and s = k, we obtain

(5.17) L ′(0) =
1√
ασ2

(
1√
π

e
−

„
m∗√
ασ2

«2

− m∗
√

ασ2
Erfc

[
m∗
√

ασ2

])

and

(5.18) L ′(k) = −m

σ2
exp

(
2km

σ2

)
Erfc

[
2αm + k

2
√

ασ2

]
.

Note that L ′(k) < 0, and L ′(0) > 0 by (5.12) and by the remark that follows it. So we have proved

the following result:

Lemma 5.3. Let a > α and m∗ > 0. Then L(s), defined in (5.16), attains its maximum value at

some s ∈ (0, k).

The maximum can be located numerically (cf. the discussion in the end of §7).

6. The Coupled Moments Equations

For the analysis in this section, we define

(6.1) R(s, t) =
∫ ∞

0

e−sxp(x, t) dx, s ≥ 0 .

Multiplying the original partial differential equation (2.1) by e−sx, integrating by parts from zero

to infinity (which amounts to formally applying the Laplace transform), and using the boundary

condition (2.3) we obtain

(6.2)
∂R

∂t
− αs

∂R

∂s
=

1
2
σ2s2R− 1

2
σ2 ∂p

∂x
(0, t) + ske−atR− ke−atp(0, t) ,

where we have used (when s > 0)

(6.3)
∂p

∂x
(x, t) is bounded as x →∞ for each t
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and (2.4). Note that (2.4) implies

(6.4) p(x, t) → 0 as x →∞ for each t.

Recall that in (4.14) we defined M(t) =
∫∞
0

p(x, t) dx, and that we have the absorbing barrier

condition (2.3), p(0, t) = 0 for all t ≥ 0. Using the fact that M(t) = R(0, t), and evaluating (6.2) at

s = 0, we obtain

(6.5)
dM

dt
= −1

2
σ2 ∂p

∂x
(0, t) ≤ 0

with the inequality following from the fact that
∂p

∂x
(0, t) ≥ 0 in view of (2.3) and (2.7). Differentiating

(6.2) with respect to s, we have

(6.6)
∂R

∂t∂s
− α

∂R

∂s
− αs

∂2R

∂s2
= σ2sR +

1
2
σ2s2 ∂R

∂s
+ ke−at(R + s

∂R

∂s
).

Setting s = 0 in (6.6), we obtain

(6.7)
dµ

dt
= αµ− ke−atM(t) ,

where µ(t) is the first moment of the probability density function p(x, t) given by

(6.8) µ(t) ≡
∫ ∞

0

xp(x, t) dx = −∂R

∂s
(0, t) ;

that is, µ(t) is the mean PSA level at time t.

To develop additional results regarding the first moment µ(t), we will need some preliminary

lemmas.

Lemma 6.1. Let f(·) be continuous and let g(·) be differentiable and monotonic on [a, b]. There

exists ξ ∈ [a, b] such that

∫ b

a

g(x)f(x) dx = g(a)
∫ ξ

a

f(x) dx + g(b)
∫ b

ξ

f(x) dx .
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Proof of Lemma 6.1. Let F ′(x) = f(x). By the Intermediate Value Theorem (g is monotonic),

there exists ξ ∈ [a, b] such that

∫ b

a

F (x)g′(x) dx = F (ξ)
∫ b

a

g′(x) dx = F (ξ)(g(b)− g(a)).

Using
∫ ξ

a
f(x) dx = F (ξ)− F (a),

∫ b

ξ
f(x) dx = F (b)− F (ξ), and integration by parts, we have

∫ b

a

f(x)g(x) dx =
∫ b

a

F ′(x)g(x) dx = F (b)g(b)− F (a)g(a)−
∫ b

a

F (x)g′(x) dx

= F (b)g(b)− F (a)g(a)− F (ξ)(g(b)− g(a)) = g(a)(F (ξ)− F (a)) + g(b)(F (b)− F (ξ))

= g(a)
∫ ξ

a

f(x) dx + g(b)
∫ b

ξ

f(x) dx . �

(6.9)

Lemma 6.2. Let µ, k, a, M , α and p be as described earlier. For any ε > 0, there exist ξ1, ξ2, and

ξ3 with 0 ≤ ξ1 ≤ ξ2 ≤ ε and 0 ≤ ξ3 ≤ ε such that

(6.10)
dµ

dt
≥
(

αε− ke−at

)
M(t) +

αεξ2

2
(p(ξ2, t)− p(ξ1, t))−

αε2

2
p(ξ3, t) .

Proof of Lemma 6.2. Let ε > 0. From integration by parts we have

(6.11)
∫ ε

0

(ε− x)xpx(x, t) dx = −ε

∫ ε

0

p(x, t) dx + 2
∫ ε

0

xp(x, t) dx .

Using (6.7) and (6.11), and estimating from below the improper integral of xp(x, t) in the following

equation, we obtain

dµ

dt
= αµ− ke−atM(t) = α

∫ ∞

0

xp(x, t) dx− ke−at

∫ ∞

0

p(x, t) dx

= α

(∫ ε

0

xp(x, t) dx +
∫ ∞

ε

xp(x, t) dx

)
− ke−at

(∫ ε

0

p(x, t) dx +
∫ ∞

ε

p(x, t) dx

)
≥
(
αε− ke−at

) ∫ ∞

ε

p(x, t) dx +
(αε

2
− ke−at

)∫ ε

0

p(x, t) dx

+
α

2

∫ ε

0

(ε− x)xpx(x, t) dx +
αε

2

∫ ε

0

p(x, t) dx− αε

2

∫ ε

0

p(x, t) dx

=
(
αε− ke−at

) ∫ ∞

0

p(x, t) dx +
α

2

∫ ε

0

(ε− x)xpx(x, t) dx− αε

2

∫ ε

0

p(x, t) dx .

(6.12)
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Applying Lemma 6.1 with g(x) = ε − x and f(x) = xpx(x, t) for fixed t, we have that there exists

ξ2 ∈ [0, ε] such that

(6.13)
∫ ε

0

(ε− x)xpx(x, t) dx = ε

∫ ξ2

0

xpx(x, t) dx.

One more application of Lemma 6.1 with g(x) = x and f(x) = px(x, t) for fixed t yields ξ1 ∈ [0, ξ2]

such that

(6.14)
∫ ξ2

0

xpx(x, t) dx = ξ2

∫ ξ2

ξ1

px(x, t) dx = ξ2(p(ξ2, t)− p(ξ1, t)).

Combining (6.12)–(6.14) and recalling that M(t) =
∫∞
0

p(x, t) dx, we have

(6.15)
dµ

dt
≥
(

αε− ke−at

)
M(t) +

αεξ2

2
(p(ξ2, t)− p(ξ1, t))−

αε2

2
p(ξ3, t) . �

Now we note that the second term on the right-hand side of (6.15) can be estimated as

αεξ2

2
|(p(ξ2, t)− p(ξ1, t))| ≤ αε2 max

x∈[0,ε]
p(x, t) ≤ αε2fme−αt,

while the third term is less than or equal to (αε2/2)fme−αt by application of (2.8) and (2.16). Thus

we have

(6.16)
dµ

dt
≥
(
αε− ke−at

)
M(t)− 3

2
αε2fme−αt .

Applying 0 < L ≤ M(t) ≤ 1 for all t ≥ 0 (cf. (4.16)), we can write

(6.17)
dµ

dt
≥ αεL− ke−at − 3

2
αε2fme−αt .

Since (6.17) holds for all ε > 0, for each fixed t we can maximize its right-hand side with respect to

ε, obtaining ε = Leαt/(3fm), and thus

(6.18)
dµ

dt
≥ αL2

6fm
eαt − ke−at .

Note that the right-hand side of (6.18) tends to infinity as t →∞.
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Theorem 6.3. The mean PSA level, µ(t), remains positive for all t > 0 and there are two alterna-

tives in the evolution of the mean PSA level. Either µ′(t) > 0 for all t > 0, or there exists a unique

T > 0 such that µ′ < 0 on [0, T ] and µ′ > 0 on [T,∞]. We call such T “the turning time.”

Proof of Theorem 6.3. Suppose that there exists a finite time T 0 with µ(T 0) =
∫∞
0

p(x, T 0) dx =

0. Then p(x, T 0) = 0 for all x ≥ 0, and thus M(T 0) = 0, which is not possible since M(t) ≥ L > 0

for each t (cf. (4.16)). Suppose now that µ′(t1) < 0 for some t1 > 0. Since L > 0 (cf. (5.4),

(5.8), and Theorem 5.1), by (6.18) there exists t2 > t1 with µ′(t2) > 0, and therefore there exists

T ∈ (t1, t2) with µ ′(T ) = 0. Differentiating (6.7), we have

(6.19)
d2µ

dt2
(T ) = α

dµ

dt
(T ) + kae−aT M(T )− ke−aT M ′(T ) = kae−aT M(T )− ke−aT M ′(T ) > 0 ,

since M ′ ≤ 0 by (6.5). It follows that any critical point of µ must be a minimum. In addition, if

there were two or more minima, it would imply that there exists a local maximum, contradicting

(6.19). Thus the minimum is unique. �

If t∗ is defined as the unique solution of

(6.20)
αL2

6fm
eαt∗ − ke−at∗ = 0,

then, in view of (6.18), the average PSA, µ(t), will start increasing before the time t∗ and an upper

bound for the turning time is

(6.21) t∗ =
1

a + α
ln

6kfm

αL2
.

We next obtain another upper bound for the turning time, T , using the solution to the deterministic

problem (2.5), (2.6) for the case when m = µ(0) =
∫∞
0

xf(x) dx > k/(a+α). Subtracting (2.5) from

(6.7), we have

d

dt
(µ−X) = α(µ−X) + ke−at(1−M(t)) ≥ α(µ−X)

with µ(0) − X(0) = m −m = 0. Thus µ(t) ≥ X(t) for all t ≥ 0 and µ ′(t) ≥ X ′(t) for all t ≥ 0.

From this we conclude that if t∗∗ is a critical point of (2.5), then we have µ ′(t∗∗) ≥ X ′(t∗∗) = 0,
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and thus the time t∗∗ is past the turning point T (cf. Figure 3 and concluding remarks in §7). So

we have another upper bound on T :

(6.22) T ≤ t∗∗ =
1

a + α
ln

ka

α(m(a + α)− k)
.

We can also estimate the turning time from below. Since µ ′(T ) = 0, we have from (6.7)

(6.23) e−aT =
αµ(T )
kM(T )

or T =
1
a

ln
(

kM(T )
αµ(T )

)
.

We note that M(t) ≥ L and µ(T ) < µ(0), so that

(6.24) T =
1
a

ln
(

kM(T )
αµ(T )

)
≥ 1

a
ln
(

kL

αµ(0)

)
≡ T ∗ .

The bounds identified above for the time when a relapse in PSA level may occur (turning time

T ) for the average prostate cancer patient are helpful in determining guidelines for when future

treatments should be considered, because lower doses of radiation may be more appropriate if disease

levels are low.

7. Numerical Analysis of the Moments

In this section we focus on the numerical approximation of the quantities discussed in the previous

sections. We pick x0 ≥ 0 and integrate from x0 to ∞ the partial differential equation (2.1) with

respect to x. Using integration by parts and (6.4), we obtain

(7.1)
d

dt

∫ ∞

x0

p(x, t) dx = −σ2

2
px(x0, t) + p(x0, t)

(
αx0 − ke−at

)
,

where px = ∂p/∂x. Similarly, multiplying (2.1) by x and x2, respectively, we can obtain

d

dt

∫ ∞

x0

xp(x, t) dx = α

∫ ∞

x0

xp(x, t) dx− ke−at

∫ ∞

x0

p(x, t) dx

+
σ2

2
p(x0, t) + x0

[
−σ2

2
px(x0, t) + p(x0, t)

(
αx0 − ke−at

)]
,

(7.2)
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and

d

dt

∫ ∞

x0

x2p(x, t) dx = 2α

∫ ∞

x0

x2p(x, t) dx− 2ke−at

∫ ∞

x0

xp(x, t) dx

+ σ2

∫ ∞

x0

p(x, t) dx + σ2x0p(x0, t)

+ x2
0

[
−σ2

2
px(x0, t) + p(x0, t)

(
αx0 − ke−at

)]
.

(7.3)

If we define the second moment, µ2(t) ≡
∫∞
0

x2p(x, t) dx, then the above equations yield (6.5), (6.7),

and

(7.4) µ′2(t) = 2αµ2(t)− 2ke−atµ(t) + σ2M(t).

Since it appears that most of the information regarding the success/failure of the irradiation

treatment is contained in M(t) =
∫∞
0

p(x, t) dx and the moments µ(t) and µ2(t) rather than in the

pointwise values of p(x, t), we have focused our attention on the numerical approximation of these

three quantities. This then allows us to modify the usual numerical solvers for parabolic partial

differential equations to compute the desired quantities efficiently and also somewhat elegantly. In

what follows, we will discuss the numerical algorithm for approximating M(t) at equidistant time

steps j∆t, j = 1, 2, . . . ; once these approximations are computed, approximations for the solutions

of the ordinary differential equations for µ and µ2 can be computed on the same grid.

Description of the PDE solver. We now consider the partial differential equation (2.1)

and describe the numerical algorithm to produce an approximation to M(t) given by (4.14). We

first observe that M(t) should not be difficult to approximate; in view of (6.5), if we have an

approximation to px(0, t), then we can easily solve the ordinary differential equation (6.5). This

yields adequate results in many cases, but in some cases an alternative approach, described in the

next paragraph, produces more accurate results with the same discretization parameters.

To describe the alternative method, we first observe that equation (7.1) allows one to approximate∫∞
x0

p(x, j∆t) dx by solving a simple ordinary differential equation if the value of the integral is known

at time t = 0 and if the right-hand side of (7.1) can be computed at any time t ≥ 0 (cf. description
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of the ODE solver below). The remaining part of M(j∆t), the integral
∫ x0

0
p(x, j∆t) dx, can then be

approximated using a computed approximate solution to the partial differential equation (2.1) and

an appropriate quadrature rule. Considering the discretization error in the approximate solution to

the partial differential equation (see the next paragraph), the trapezoidal rule, which is of second

order, is all that will be needed.

The approximate solution to the initial-boundary value problem (2.1)–(2.4) is computed using

the Crank–Nicolson finite difference scheme, whose discretization error is of second order in both

space and time. This scheme is implicit in time and ensures numerical stability of the results. If we

denote the approximation to p(i∆x, j∆t) by pj
i , then the numerical scheme has the following form:

pj+1
i − pj

i

∆t
=

1
2
(
Dip

j+1 + Dip
j
)
,

where Dip
j denotes the space discretization of the right-hand side of (2.1) at x = i∆x and t = j∆t,

so that

Dip
j =

σ2

2
pj

i+1 − 2pj
i + pj

i−1

(∆x)2
−

pj
i+1 − pj

i−1

2∆x

(
αxi − ke−aj∆t

)
− αpj

i .

Instead of solving on an infinite domain (0,∞) for x, we first replace the domain by a finite

domain (0, X), X > 0, and supply a Dirichlet boundary condition

p(X, t) = 0 for all t > 0 ,

corresponding to another absorbing barrier at a high PSA level, X.

Description of the ODE solver. After the partial differential equation has been solved and the

discrete values M(j∆t), j = 1, 2, . . . , have been obtained, we solve the ordinary differential equations

(6.7) and (7.4) for µ and µ2 to obtain the approximations to µ(j∆t) and µ2(j∆t), j = 1, 2, . . . . Since

the values M(j∆t) already carry a discretization error of O(∆x2+∆t2), nothing more than a second-

order numerical scheme is needed to approximate µ and µ2.

Notice that all three differential equations (6.7), (7.1), and (7.4) are of the form

y′(t) = cy(t) + f(t) ,
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where c is a constant. In order to avoid instability of the numerical approximation of the solution,

y(t), we have chosen an implicit scheme, the trapezoidal method. Denoting the approximations

to y(j∆t) and f(j∆t) by yj and fj , respectively, the numerical approximation to the solution is

computed by

yj+1 − yj

∆t
=

1
2

[c(yj+1 + yj) + (fj+1 + fj)] ,

which is (because of the linearity of the differential equation) easily manipulated into an explicit

expression for yj+1,

yj+1 =
2 + c∆t

2− c∆t
yj +

∆t

2− c∆t
(fj+1 + fj).

This expression is then used to compute the approximations to M(j∆t), µ(j∆t) and µ2(j∆t).

The input parameters (m, k, a, and α) for numerical simulation were determined by data fitting

based on studies of prostate cancer and its treatments at the University of Michigan Medical School

(cf. [2], [4]–[7]). Below we focus on two specific cases. The first case had the input parameters

µ(0) = m = 28.2093, k = 11.8359, a = 0.289246, and α = 0.131124. The second case had the

input parameters µ(0) = m = 47.8178, k = 25.7138, a = 0.534273, and α = 0.0356484. These

two particular cases were also chosen to contrast two situations. In the first case, the deterministic

solution of (2.5), (2.6) deviates strongly from the mean PSA level obtained from the stochastic model

(2.1)–(2.4). In the second case, the deterministic solution deviates only slightly from the mean PSA

level for an extended period of time (cf. Figures 3 and 4). In both cases we used σ = 1 (cf. [2]).

We note that the majority of cases will be confined to the strip [µ(t) − Σ(t), µ(t) + Σ(t)], where

Σ(t) =
√

µ2(t)− µ2(t).

Now we examine (for the cases described above) theoretical bounds on turning times derived in

§6. First we estimate L. In both cases a > α and L1 > L4 (L1 applies since k < m(a + α)), so we

use (5.2) and the second inequality in (5.8). We obtain 0.0218 ≤ L ≤ 0.497 for the first case and

0.529 ≤ L ≤ 0.752 for the second case.
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Remark 7.1. While (5.2) produces a better lower bound for L than the first inequality in (5.8), they

both can be significantly improved for the first case to obtain 0.432 ≤ L ≤ 0.497 by using Lemma 5.3

and analyzing (5.16) as s decreases from k to 0 (cf. Figure 2). The lower bound on L for the second

case can be slightly improved (0.535 ≤ L ≤ 0.752) by the same method.

We note that since k < m(a+α), the bound (6.22) applies in both cases. We use fm = 20/(
√

2πm)

in (6.21) consistent with the standard deviation in the initial PSA distribution density. For the first

case, the upper bounds (6.21), (6.22) on the turning point T for mean PSA level are t∗ = 30.11,

t∗∗ = 16.79, but (6.24) yields a negative lower bound. For the second case, the upper bounds are

t∗ = 13.78, t∗∗ = 9.69, and the lower bound is T ∗ = 3.89. The cited bounds are given in months.

We note that in both cases (6.22) gives a sharper estimate than (6.21) (t∗∗ < t∗)1.

The obtained bounds are in agreement with the numerical approximation of µ(t), where the

turning times are 8.8 months in the first case and 8.93 months in the second case.

8. Conclusion

The stochastic model for the level of PSA following radiological treatment for prostate cancer,

first described in [1] and studied in greater depth in this report, has several advantages over the

corresponding deterministic “bi-exponential” model used to represent evolving PSA levels in a num-

ber of research studies. In addition to the exact solution of the stochastic model found in [1] in the

case that a = α, we have been able to describe the dynamics of PSA behavior for all parameter

combinations, providing estimates for the biomedically important features of the solution. While

the deterministic model sometimes allows PSA values to become negative, the use of an “absorb-

ing boundary” condition for the stochastic model assures that the values are always nonnegative.

The stochastic model also allows for distributed (rather than fixed) initial conditions, reflecting,

1If we use the lower bound on L discussed in Remark 7.1, then for the first case (6.21) provides a sharper upper

bound on T than (6.22) (15.96 = t∗ < t∗∗ = 16.79). It also gives a positive lower bound T ∗ = 1.12 for the first case.



22

for example, the uncertainty in PSA measurements. In addition, the stochastic model allows for

simulations that express the potential variability in outcomes for a single patient.

Applied to a population of patients, our analysis of the stochastic model allows for the determina-

tion and/or estimation and study of several important measures of treatment effectiveness. The tran-

sient fraction of non-cured patients, M(t), and the ultimate treatment failure rate, L = limt→∞M(t),

for which we have derived estimates and bounds, are two such examples. In particular, the bounds

for L derived in §5 indicate that the treatment failure rate is always positive but can be shown to

be small if the level of treatment k is large enough. Together, M(t) and µ(t), the mean at time t

of possible PSA levels for a given set of parameters and a given distribution of initial values, have

been shown to solve a pair of coupled ordinary differential equations that allow for more detailed

analysis.

For all parameter sets when the assumptions include a growing cancer, it was shown that µ(t) will

eventually turn up (although this may happen long after a patient has succumbed to an unrelated

cause of death). In some cases, the turning point for µ(t) may be early and is likely to provide a good

indication of the time when follow-up treatment should be considered. For these reasons the upper

and lower bounds found for the turning point may be important. It was also shown that µ(t) always

exceeds the value of the solution X(t) of the deterministic model for corresponding parameter values

and initial conditions. In addition, since X ′(t) ≤ µ′(t), if X has a turning point (i.e., k < m(a + α),

cf. [1]), then this turning point provides an upper bound for the turning point of µ. Numerical

simulations suggest that the turning point for µ can come early or late, depending on the parameter

values.

An additional benefit of the stochastic model is the ability to investigate the impact of variability

on outcomes, determined in this case by PSA levels. In particular, the mean PSA level, µ(t), can be

shown in simulations to turn up earlier as the model’s variance σ2 is increased or as the variance in

the initial distribution grows larger. This is another way in which the stochastic model may provide

insight (not possible in a deterministic model) into the manifestations and treatment of cancer.
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Although we have not focused here on the estimation of model parameters, that is clearly a necessary

and important step in the application of the model. Using PSA time series data made available by

the University of Michigan Medical Center, we have found parameter values which allowed for an

accurate representation of patient trajectories using the mean PSA level µ(t). Simulation of random

PSA trajectories derived using the same parameter values provides an indication of the extent to

which different outcomes might be observed.
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y

τ = ασ2

2 τ = α2σ2

a+α τ

y0(τ) y∗(τ) ỹ(τ)

Figure 1. Case a < α with S ⊂ D ⊂ T
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Figure 2. Case a > α with T ′ ⊂ D ⊂ S and T + ⊂ D ⊂ S
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Figure 3. Numerical Simulation with µ(0) = m = 28.2093
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Figure 4. Numerical Simulation with µ(0) = m = 47.8178
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